
The new RawData, Wire and Hit objects
or, “what have you done with my data”

Gianluca Petrillo, Erica Snider

University of Rochester/Fermilab

MicroBooNE IIT Workshop, January 7th , 2015

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 1 / 27



Outline

1 Introduction

2 Changes
raw::RawDigit
recob::Wire
recob::Hit

3 Summary

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 2 / 27



Data products review

LArSoft comprises about 40 classes that can be serialized into
ROOT files (“data products”).
Here the largest block of interconnected products is shown:

raw::RawDigit

recob::Track

recob::Vertex

recob::Wire

recob::Shower

recob::Hit

recob::SpacePoint
recob::Cluster

recob::PFParticle

recob::EndPoint2D

anab::Calorimetry

anab::CosmicTag

anab::ParticleID

Class relationships are expressed through data members (as art
pointers) and associations (a separate data product).

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 3 / 27



The review process

These products are currently being reconsidered:
do they still reflect useful concepts?
do they still meet experiments’ current needs?
do they look flexible enough to accommodate future needs?
can they read outside an art environment?

The review process is such organized:

1 there is a lot of discussions with code authors
2 we collect the ideas and synthesize proposals
3 proposals are evaluated by a specific meeting with experiments

and framework representatives
4 often, it’s GOTO 1

5 finally, it’s time to implement them

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 4 / 27

https://indico.fnal.gov/categoryDisplay.py?categId=426
https://indico.fnal.gov/categoryDisplay.py?categId=426


Planned changes

These data products are identified as revision candidate:
raw::RawDigit removing pedestal information
recob::Wire removing art dependency
recob::Hit removing art dependency, changing some data

members
recob::Cluster adding a few data members, removing a few

others
recob::EndPoint2D splitting into a geometric 2D point class and a

reconstructed class
recob::Track redesigning the concept, splitting in different classes

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 5 / 27



raw::RawDigit

RawData::fADC became private
RawData::fPedestal is candidate for removal: its information
should ideally come from a database
documentation shows some usage example and precise definition
of data members

fADC replaced by ADCs() (read-only)
fSigmaPedestal removed

Memento!
raw::RawDigit data is often compressed: uncompress it with

std::vector<short> uncompressed_digits(rawdigit->Samples());
raw::Uncompress
(rawdigit->ADCs(), uncompressed_digits, rawdigit->Compression());

(raw::Uncompress() is defined in RawData/raw.h)

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 6 / 27



recob::Wire

Wire::fRawDigit was removed
Wire::Channel() was added
Wire::fSignalType was removed
documentation updated

recob::Wire class is now art-independent. Consequences:
1 no direct way to connect to the original raw::RawDigit
2 constructors are changed (no raw::RawDigit pointer any more)

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 7 / 27



recob::Wire: pointer removal

art pointer to raw::RawDigit has been removed from
recob::Wire

prescription: a producer creating recob::Wire from
raw::RawDigit should also create their 1-to-1 association
CalWire-like modules in LArSoft, uboonecode and lbnecode
have been updated to produce this association
the pointer was used (almost?) exclusively to get channel number;
now can be accessed directly as recob::Wire::Channel()
channel number has now its own data type, raw::ChannelID_t
(defined in SimpleTypesAndConstants/RawTypes.h); a
special constant raw::InvalidChannelID represents... an
invalid channel ID
do you still need the original raw::RawDigit?
I am working to write some generic (meaning also somehow
inefficient) code to get blindly from a art::Ptr<recob::Wire>
to its associated raw::RawDigit...

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 8 / 27



recob::Wire: raw::RawDigit access

In the meanwhile, an efficient wire loop:
// if you have the wire handle from the event...
art::ValidHandle<recob::Wire> Wires
= event.getValidHandle(CalWireModuleLabel);

// ... query for the Wire-RawDigit association from the same module
art::FindOneP<raw::RawDigit> RawDigits(Wires, event, CalWireModuleLabel);

for (size_t iWire = 0; iWire < Wires->size(); ++iWire) {
// this is the wire...
recob::Wire const& wire = Wires->at(iWire);
// ... and this is the associated RawDigit
art::Ptr<raw::RawDigit> const& pDigit = RawDigits->at(iWire);
// ...

} // for

Requires:
#include <art/Framework/Core/FindOneP.h>
#include "art/Framework/Principal/Handle.h"
#include "RecoBase/Wire.h>
#include "RawData/RawDigit.h>

Warning: slide code! not compiled, might be just wrong
G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 9 / 27



recob::Wire: construction

constructor has become simple, taking a list of all data members
for convenience, a wire creation helper is also provided

From uboonecode/uboone/CalData/CalWireROI_module.cc:
art::Ptr<raw::RawDigit> digitVec; // pointer to the original RawDigit
std::unique_ptr<std::vector<recob::Wire>> wirecol; // future product
std::unique_ptr<art::Assns<raw::RawDigit,recob::Wire>> WireDigitAssn;
recob::Wire::RegionsOfInterest_t ROIVec; // signal regions of interest

// create the new wire directly in wirecol
wirecol->push_back
(recob::WireCreator(std::move(ROIVec),*digitVec).move());

// add an association between the last object in wirecol
// (that we just inserted) and digitVec
if (!util::CreateAssn
(*this, evt, *wirecol, digitVec, *WireDigitAssn, fSpillName))

{
throw art::Exception(art::errors::InsertFailure) /* ... */;

} // if failed to add association

The helper recob::WireCreator is defined in:
#include "RecoBaseArt/WireCreator.h"

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 10 / 27



recob::Wire: “but I want...”

RawDigit() gone; see previous slides
RawDigit()->Channel() use Channel()
SignalType() really?? anyway see below

To get the signal type you need the geometry information:

recob::Wire const& wire; // ... filled with a real wire
// geo::SigType sigType = wire.SignalType(); // removed!!
art::ServiceHandle<geo::Geometry> geom;
geo::SigType sigType = geom->SignalType(wire.Channel());

Requires:

#include "SimpleTypesAndConstants/geo_types.h"
#include "Geometry/Geometry.h"
#include "RecoBase/Wire.h"

Same Warning: slide code! not compiled, might be just wrong

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 11 / 27



recob::Hit

removed some ambiguously defined data members, added some
replacements for them
added some new ones: RMS(), DegreesOfFreedom(), ...
Hit::fRawDigit and Hit::fWire were removed
documentation updated

recob::Hit class is now art-independent. Consequences:
1 no direct way to connect to the original raw::RawDigit and
recob::Wire

2 constructors are changed (no raw::RawDigit nor
recob::Wire pointer any more)

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 12 / 27



recob::Hit: times

StartTime() and EndTime() have an ambiguous definition
the code usually seems to expect them to be t = tpeak ± σhit

most common use: (EndTime()-StartTime())/2.): peak
half-width
second common use: tick time range for time matching

New approach:
StartTime() and EndTime() ambiguous: removed!
enter RMS(), related to hit width (σ for Gaussian hits)
also, and mostly unrelated: added Signal(): the waveform
portion the hit was extracted from
also add signal range time extremes, StartTick() and
EndTick(), in TDC count units

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 13 / 27



recob::Hit: pointer removal and construction

same situation as for recob::Wire: simple constructors...
for convenience, a hit creation helper is also provided

Code from larreco/HitFinder/GausHitFinder_module.cc:
produces<std::vector<recob::Hit>>();

Listing 1: In module constructor: equivalent to produces<>() (old code)

std::unique_ptr<std::vector<recob::Hit>> hcol; // data product
art::Ptr<recob::Wire> wire; // original wire (with pointer to raw digit)

// construct a hit (including pointers to wire and rawdigit)
recob::Hit hit(

wire, wid, StartTime[dd], EndTime[dd], MeanPosition[dd],
MeanPosError[dd], Charge[dd], ChargeError[dd], Amp[dd], AmpError[dd],

NumOfHits[dd], FitGoodness[dd]
)
);

// move the hit into the product
hcol.emplace_back(std::move(hit));

evt.put(std::move(hcol)); // put the data product into the event

Listing 2: In produce() (old code)
G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 14 / 27



recob::Hit: pointer removal and construction

same situation as for recob::Wire: simple constructors...
for convenience, a hit creation helper is also provided

Code from larreco/HitFinder/GausHitFinder_module.cc:
recob::HitCollectionCreator::declare_products(*this);

Listing 3: In module constructor: equivalent to produces<>()

recob::HitCollectionCreator hcol(*this, evt); // data product proxy
art::Ptr<recob::Wire> wire; // original wire
art::Ptr<raw::RawDigits> rawdigits; // original rawdigit

// create a hit with HitCreator
recob::HitCreator hit(

*wire, wid, startT, endT, RMS[dd], MeanPosition[dd],
MeanPosError[dd], Amp[dd], AmpError[dd], Charge[dd], ChargeError[dd],
SumADC[dd], NumOfHits[dd], dd, FitGoodness[dd], FitNDF[dd],
std::vector<float>(signal.begin() + startT, signal.begin() + endT)
);

// move the hit into the product and associate it
hcol.emplace_back(hit.move(), wire, rawdigits);

hcol.put_into(evt); // put the data product into the event

Listing 4: In produce()
G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 15 / 27



recob::Hit: construction (commentary)

recob::HitCreator helper class makes creation of new
recob::Hit roughly similar to the old one
pointers to raw::RawDigit and recob::Wire have been
removed, therefore...
prescription: a producer creating recob::Hit should also
produce associations to its recob::Wire and raw::RawDigit,
as proper
a class, called recob::HitCollectionCreator, simplifies the
creation of a recob::Hit data product together with its (optional)
associations
both declared in lardata/RecoBaseArt/HitCreator.h

HitFinder-like modules in LArSoft, uboonecode and lbnecode
have been updated (checks needed!)

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 16 / 27



recob::Hit: other additions

Additions:
there may be multiple hits in the same time range: we allow each
hit to know

– how many hits are reconstructed in that range (Multiplicity())
– which of them this one is (LocalIndex())

Channel(): ID of the channel the hit is on
DegreesOfFreedom() of the hit finding process (pairs with the
existing GoodnessOfFit())
SummedADC(), plain sum of the ADC counts covered by the hit (in
contrast with Integral(), that is typically a direct fit parameter)

100

StartTick 42
EndTick 132
PeakTime 52.0
LocalIndex 0
Multiplicity 3

StartTick 42
EndTick 132
PeakTime 66.3
LocalIndex 0
Multiplicity 3

StartTick 42
EndTick 132
PeakTime 106.9
LocalIndex 2
Multiplicity 3

Tick count0 50 150

ADC count
(calibrated)

Illustration of a train of hits (multiplicity: 3) in the same region of interest

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 17 / 27



recob::Hit: “but I want...”

RawDigit(), Wire() both gone (see above)
RawDigit()->Channel() use Channel()
Wire()->RawDigit()->Channel()
Charge(), Charge(false) ⇒ Integral()
Charge(true) ⇒ PeakAmplitude()
StartTime(), EndTime() see above, but also:
StartTime() maybe PeakTimeMinusRMS()
EndTime() maybe PeakTimePlusRMS()
SigmaStartTime() removed, not replaced
SigmaEndTime()

I ask the authors of hit finder algorithms to verify and correct:
fLocalIndex (most often I just plugged in a -1)
fStartTick, fEndTick
fSignal: did I get the right signal vector?
fNDF

fSummedADC (usually
∑fEndTick

k=fStartTick fSignalk )
G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 18 / 27



Wait a moment... won’t this break the existing data?... yep.

Time line:
this revolution will render the existing data unreadable, a textbook
example of breaking change
testing of the new classes should start immediately after this
workshop; you are welcome to start it today!
changes to recob::Cluster will be discussed and summarized
during this workshop
we are preparing a draft implementation of a proposal for
recob::Track

we want MicroBooNE to be able to use the new classes in your
next Monte Carlo Challenge (end of January 2015)

This is still a very ambitious goal.

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 19 / 27



Status

changes to raw::RawDigit, recob::Wire and recob::Hit
are in a published branch: feature/DataProductRevision
that code compiles, but checks by the respective code authors
and testing are due
a itemized status is available on the web: https://cdcvs.fnal.gov/

redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems

there is still plenty of room for changes
Eric Church will help with testing; but checks from the authors are
still needed!
err... did I mention that authors of the algorithms should verify the
changes make sense?
No, really: there are a lot of placeholders in the code, that you will want
to replace with real information

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 20 / 27

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/DataProductsArchitectureActionItems


Outlook

we are reviewing the main reconstruction data products
we have a partial implementation in place; working fast on the rest
as you may have overheard by now, we ask the help of algorithm
authors to complete the work
we also need the experiments to actively scrutiny the changes
under discussion

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 21 / 27



Additional material

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 22 / 27



The other example: recob::Track

The track object (recob::Track) has some problems:
lacks a definition about density of trajectory points
contains elements that are algorithm-dependent
is able to host Bézier tracks only by a (ugly) hack

A proposal, under discussion, consists in:
leaving in recob::Track only general track properties: start and
end point, intermediate trajectory points, track quality
prescribing by policy the trajectory point density
delegating the continuous representation to another object
(recob::Trajectory)
moving the momentum estimation into a new object
(recob::Momentum)
binding all these objects with associations

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 23 / 27



Example of direct use of data in another framework

Say that your favourite framework has a data model where all data
classes inherit from TDataObject (may be even ROOT’s TObject).
You can define a base class:
#include "ArtlessFW/TDataObject.h"
#include "RecoBase/Hit.h"

template <typename Data>
class TDataWrapper: public Data, public TDataObject { /* ... */ };

namespace wrapped {
class Hit: public TDataWrapper<recob::Hit> { /* ... */ };

}

wrapped::Hit includes the very interface of recob::Hit
... plus additional methods that you care to define specifically for it
you are using the original lardata/RecoBase/Hit.h[.cxx]
you might even read directly from the art tree into wrapped::Hit

* I haven’t tried the limits of this model, but it might even work
(if I were sure, this slide would not be in the appendix!)

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 24 / 27



The current proposal: raw digits and wires

The review has so far focused on six data products.

raw::RawData: straight readout from DAQ

removal of pedestal information, still under discussion

recob::Wire: calibrated and filtered signal on a channel

removal of art pointers
addition of channel ID member
removal of SignalType()

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 25 / 27



The current proposal: hits and clusters

recob::Hit: deposition from a particle on a wire
removal of art pointers
removal of unused information
addition of hit width (RMS)
more precise definition of start and end times (now defined in TDC
tick units), peaks and integrals

recob::Cluster: set of hits from the same particle

removal of unused information (dQ/dx)
addition of shower/track discriminating variables
more things being discussed

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 26 / 27



The current proposal: tracks and 2D end-points

recob::Track: reconstructed path of a ionizing particle

A lot of discussion ongoing... implementing multiple classes:
a discrete track, result of the tracking fit
a trajectory, continuous representation of the particle path
a momentum describing the initial impulse of the particle
additional classes will hold results specific to the algorithms

recob::EndPoint2D: a point on a wire plane
Still under discussion. Split into:

a geometric object: just two coordinates
an object result of a reconstruction algorithm (with goodness of fit
etc.)

G. Petrillo (Rochester/FNAL) The new RawData, Wire and Hit objects January 7th , 2015 27 / 27


	Introduction
	Changes
	raw::RawDigit
	recob::Wire
	recob::Hit

	Summary
	Appendix

